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Abstract
Free Boolean extension of Heyting algebras play a crucial role in the algebraic translation
of intuitionistic logic into modal S4 logic, in particular in the proof of the Blok-Esakia
theorem. Based on his duality, Esakia provided a characterization of free Boolean extensions.
Algebraically, is may be expressed with the use of stable homomorphism and simple interior
algebras. W provide a direct proof of this fact.

1 Introduction

It is well known that every bounded distributive lattice L embeds into some Boolean lattice.
Actually, one can choose a “minimal” Boolean lattice into which L embeds. It is called the free
Boolean eztension of L. Indeed, if L embeds into Boolean lattices A, B and also A, B are
generated as Boolean algebras by the carrier L, then A and B are isomorphic [1, Section V 4].

This fact is crucial in algebraic studies of the relationship of intuitionistic logic and modal
logic S4. Stictly, the connection of Heyting algebra with interior algebra is given by the following
McKinsey-Tarski theorem [11, Section 1] (see also [4, Theorem 2.2] and [10, Section 3|). Recall
that open elements of an interior algebra M form the Heyting algebra O(M) with the order
structure inherited from M.

Theorem 1. For every Heyting algebra H there is an interior algebra B(H) such that
1. OB(H) =H;

2. for every interior algebra M, if H < O(M), then B(H) is isomorphic to the subalgebra of
M generated by H;

The algebra B(H) is called the free Boolean extension of H. From Theorem 1 it follows di-
rectly that the class of free Boolean extensions of Heyting algebras coincides (up to isomorphism
of algebras) with the class of interior algebras generated by open elements.

The Blok-Esakia theorem states that the intermediate logics are in one to one correspondence
with the normal extension of Grzegorczyk modal logic. The algebraic proof of this fact is based
on the understanding of the structure of Grzegorczyk modal algebras, i.e., algebras from the
variety generated by free Boolean extensions of Heyting algebras 3, 12].

L. Esakia developed duality theory for interior algebras [5, 6]. In particular, he provided a
characterization of free Boolean extensions of Heyting algebras. It says that an interior algebra
is isomorphic to a free Boolean extension of a Heyting algebras if and olny if its dual descriptive
frame has no non-trivial clusters [6, Theorem 12.7]. An algebraic terms it may be formulated as
follows (see the next section for the definitions).

Theorem 2. An interior algebra is isomorphic to a free Boolean extension of a Heyting algebra
if and only if it does not admits a stable homomorphism onto a four-element simple interior
algebra Sq.

We provide an algebraic direct proof of this theorem.
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2 Proof
A modal algebra M is called an interior algebra if for every a € M it satisfies
a < Oa = 0O0a.

An element a of M is open in M if Ua = a. Recall that for a modal algebra there is one to one
correspondence between its congruences and its open filters, i.e., Boolean filters closed under O
operation. In particular for an interior algebra, an element b belongs to the open filter generated
by a iff Oa < b. It follows that an interior algebra is simple iff it has exactly two open elements
0 and 1. A four-element simple algebra, denoted by Sj is depicted bellow (open elements are
marked by OJ).

Let M and N be modal algebras. We say that a mapping f: N — M is a stable homomor-
phism from N into M if it is a Boolean homomorphism and

f(a) <Of(a)

holds for every a € M. The reader may consult e.g. [2, 7] for the importance of stable ho-

momorphisms in modal logic (in [7] they are called continuous morphism). Note that a stable

homomorphism does not need to be a homomorphism. For instance, S does not admit a ho-

momorphism onto a two-element interior algebra, but it admits such stable homomorphisms.
We need the following known extensions of prime filter theorem for Boolean algebras.

Lemma 3. Let C and D be Boolean algebras, D be a subalgebra of C and U be an ultrafilter of
D Then there exists an ultrafilter W of C such that WND =U.

Proof. Let F = {c€ C|(3d € U)d < c}. Then F is a proper filter of C. By the prime filter
theorem, there exists an ultrafilter W of C extending F. Then W N D is an ultrafilter of D
extending U. By the maximality of U (as a proper filter of D), we have WND =U. 0

The following less obvious lemma may be found, as a harder exercise, in [8, Exercise 15 in
Chapter 20]. Its proof may be found in [9]. We provide also a new, and more direct proof of this
fact. Actually, the formulation in [9] is slightly stronger. Our proof yields also this extension.

Lemma 4. Let B be o proper Boolean subalgebra of A. Then there are two distinct ultrafilters
Uy and Us of A such that UyN B =UsN B.

Proof. Tt is convenient to formulate this prove with the use of homomorphisms. Recall that
ultrafilters of Boolean algebras are exactly preimages of 1 for homomorphisms onto a two-element
Boolean algebra 2.
Let e € A— B. Let G; and Gy be two different proper filters of A such that e € G1, —e € Gy
and
GiNB=GNB=G.

123




For instance, we may take

Gy ={a1hNazg € Ale<as and (3be€ B)—e <b< ag}
Gy={a1ANas € A|(Fbe B)e <b< ar and =e < ag}.

Since e and —e do not belong to B and B is closed under A operation, such defined G7 and Gq
are indeed filters of A. Moreover, e € G1, —e € Go. Furthermore, if a1 > e and ag > =e, then
a1 A ag > 0. This shows that Gy is proper. Similarly we infer that G is proper. Also it is the
case that Gy N B =Gy N B.

Let [: B — A be the embedding. Let us also define f;: A — A/G;; a + a/G;, and
f:B—=B/G; b—b/G. Since G;NB = G, the homomorphisms k;: B/G — A/Gy; b/G — b/G;
are well defined and injective. We have the following commutative diagram.

, ki
A/Gi+——B/G
AN Tf
|
A e B
By the prime filter theorem, there exists a homomorphism ¢g: B/G — 2. By Lemma 3, there
are surjective homomorphisms g;: A/G; — 2 such that g = g; o k;. Let

Ui = (gio £:) 7" (1).
Since G; C U, we have e € Uy and —e € Uy. This yields that U; # Us. Furthermore, we have
(go /)™M (D) = (giokio f)~'(1) = (gio fiol) (1) =UiN B.

Thus UyN B =UsNB.
The proof is illustrated by the following “kite” diagram (the commuting parts are marked by
).
2
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A/Gy——B/G—— A/Gy
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|

Lemma 5. Let M be an interior algebra and S be a simple interior algebra. Then the mapping
f: M = S is a stable homomorphism if and only if it is a Boolean homomorphism and for every
a € M we have f(Oa) € {0,1}.

>

o

Proof. Assume that f is a stable homomorphism. By the definition, f is a Boolean homomor-
phism. Moreover, if f(a) < 1 then f(0a) = f(O0a) < Of(0a) = 0. For the oposie implication
assume that f is a Boolean homomorphism and f(Oa) = {0,1}. If f(Oa) = 0 then, clearly,
f(Oa) <Of(a). If f(Oa) =1 then, since Oa < a, f(a) =1, and so f(Oa) =1 =0f(a). O

Proof of Theorem 2. Let M be an interior algebra and N be its subalgebra generated by all
open elements of M.
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Assume first that N is a proper subalgebra of M. Let A and B be Boolean reducts of
M and N respectively. Let U; and Uy be ultrafilters from Lemma 4. Let S be the simple
interior algebras (only with 0 and 1 open) with the Boolean reduct A/U; x A/U,. Then S is
isomorphic to Sg. Let f: A — S be given by a — (a/U1,a/Us). Then f is a surjective Boolean
homomorphism. Moreover, since Ui NN = U, NN, f(N) = {0,1}. Thus, by Lemma 5, f is a
stable homomorphism from M onto S.

Now assume that M is generated by its open elements. Then M is also Boolean generated
by its open elements. Let f be a stable homomorphism from M into Sy. By Lemma 5, for every
a € M we have f(Oa) € {0,1}. Since f preserves Boolean operations and {0, 1} is closed under
Boolean operations, [ maps M onto {0,1}. Thus f is not surjective.

]

Example 6. Let us consider the following algebra M. The carrier M is the power set of the set
N of natural numbers. The Boolean operations are the set theoretic operations (in particular,
1=N, and 0 =0). Let

1 ifa=1
Oa = .
{0,...,k~1} ifa#1and k= min—-a

Note that M is the dual algebra for the modal frame (N, ) in the Jénsson-Tarski duality. It is
known that M is a Grzegorczyk algebra, i.e., it belongs to the variety generated by free Boolean
extensions of Heyting algebras.

Let I be the Boolean filter of all cofinite subsets of N. Let S be the simple interior algebra
with the Boolean reduct obtained by dividing the Boolean reduct of M by F, and only two open
elements 0 and 1. Then f: ¢ — a/F is a stable homomorphism from M onto S. Moreover, since
S is infinite, it admits a stable homomorphism onto Sp. Thus M admits a stable homomorphism
onto So.
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